
C
H

A
P

T
E

R

1
INTRODUCTION AND BACKGROUND

CHRISTOPHER CUEVA

One approach for generating hypotheses about neural computation, is to train

recurrent neural networks (RNNs) to mimic the behavior of humans and other

animals performing experimental tasks: the inputs to the RNN are time-varying

signals representing experimental stimuli and we adjust the parameters of the RNN so

its time-varying outputs are the desired behavioral responses. How should we adjust the

parameters of the RNN to achieve the desired target outputs? The supervised learning

approach is to construct an error function, E(θ), that quantifies the error between the

RNN output and the desired output as a function of the RNN parameters θ. We then

iteratively update the parameters to minimize the error. We can motivate the form of the

parameter updates as follows. Imagine we want to update the parameters by a small

amount ε. Let ‖ε‖ = c where c is some small constant. Let’s find ε that does the most to

immediately minimize the error function, E(θ+ε). Because we are only taking a small

step from our current parameter value we can approximate the error function by a Taylor

series in powers of ε

E(θ+ε)= E(θ)+∇E(θ)Tε (1.1)

and our problem becomes
minimize

ε
E(θ)+∇E(θ)Tε

subject to ‖ε‖ = c.
(1.2)

1

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

We can solve equation (1.2) using Lagrange multipliers and find the ε that minimizes

E(θ+ε) is

ε=− c
‖∇E(θ)‖∇E(θ)

=−α∇E(θ) (1.3)

where α ≡ c/‖∇E(θ)‖ > 0. So heading in the direction of the negative gradient is the

parameter update that does the most to immediately minimize the error function. Sub-

stituting the expression for ε into equation (1.1) yields

E(θ−α∇E(θ))= E(θ)−α‖∇E(θ)‖2 < E(θ) (1.4)

and we see the error decreases as desired. To continue to minimize the error function we

repeatedly update the parameters of the neural network according to equation (1.3). The

parameters at iteration i, θ(i), are updated to obtain the parameters at iteration i+1:

θ(i+1) = θ(i)−α∇E(θ(i)) (1.5)

where α is a positive constant called the learning rate. This update procedure is called

gradient descent and is the standard training algorithm for neural networks (Cauchy,

1847; Robbins and Monro, 1951; Schmidhuber, 2015; Bottou et al., 2018). There are two

terms in this algorithm, the learning rate and the gradient of the error function. Both

of these terms are crucial for successfully training neural networks so we will consider

each of them in turn.

1.1 Learning rate

There is no general prescription for finding the best learning rate and we might expect

the value to change as learning progresses and the local curvature of the error function

changes. A learning rate that is too small decreases the error function very slowly and a

learning rate that is too large may cause the error to fluctuate around, but never reach,

a minimum, or even diverge and grow (Figure 1.1).

Automatically adjusting the learning rate during training is an area of active research.

In practice it is not a single constant but a set of constants, one for each parameter,

that are adaptively updated and can increase or decrease according to the history of

the previous gradients, taking special account of the magnitude of the gradients, their

2

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

A	

B	

Parameter		

Er
ro
r	

Parameter	1		

Pa
ra
m
et
er
	2
		

Er
ro
r	

Figure 1.1: Gradient descent on one and two dimensional error surfaces. (A) The error
(black curve) is a quadratic function of a single parameter. This parameter is varied with
gradient descent to find the minimum of the error function, using either a small learning
rate (red curve) or large learning rate (blue curve). A learning rate that is too small
decreases the error function very slowly and a learning rate that is too large may cause
the error to fluctuate around the minimum or even diverge and grow. (B) The error (top
figure) is a quadratic function of two parameters. The contours of this error function are
shown (bottom) superimposed over the parameter values. The red curve shows multiple
parameter updates using gradient descent. The gradient is perpendicular to the contour
lines so for this highly elongated error function the gradient steps are initially far from
the direction of the minimum.

variance, and estimates of the curvature of the error surface (Nesterov, 1983; Qian, 1999;

Duchi et al., 2011; Hinton et al., 2012; Zeiler, 2012; Kingma and Ba, 2015; Ruder, 2017).

We can gain some intuition into how we should adjust the learning rate based on the

shape of the error function by creating a Taylor series around our current parameter

value and approximating the error function based on the value, slope, and curvature.

The second-order Taylor approximation of the function E near the parameters θ is

E(θ+ε)= E(θ)+∇E(θ)Tε+ 1
2
εTHε (1.6)

where Hi j = ∂2E
∂θi∂θ j

is the Hessian matrix of second derivatives. For functions of a single

variable there is only one second derivative, and this quantifies how quickly the slope

3

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

changes or how “curved” the function. For functions of N variables the N eigenvalues

of the Hessian summarize the curvature along the direction of their corresponding

eigenvector; small/large absolute magnitude of the eigenvalue corresponds to small/large

curvature (Figure 1.2) which can either be curved up or down depending on the sign of

the eigenvalue.

A	 B	
Large	curvature	Small	curvature	

Second	deriva2ve	=	1	Second	deriva2ve	=	1/10	

Eiegenvalue	=	1/10	

Eiegenvalue	=	1	

Figure 1.2: The eigenvalues of the Hessian quantify the curvature. In the top row, the
slope, or derivative of the error surface, is shown with red arrows. The second derivative
is just the rate of change of the slope. In (A) this slope changes slowly and the surface has
small curvature. In (B) the slope changes quickly and the surface has large curvature.
For functions of more than one variable the eigenvalues of the Hessian summarize
the curvature along the direction of their corresponding eigenvector (black arrows, in
the bottom figures). The eigenvalue is the multivariate generalization of the second
derivative for one dimensional error surfaces. The bottom row shows an error surface
that depends on two parameters, and we see that a small eigenvalue indicates a direction
of small curvature and a large eigenvalue indicates a direction of large curvature.

Similar to how we motivated equation (1.5) from the first-order Taylor approximation,

we will now find ε that minimizes E(θ+ε) when we use the second-order Taylor approxi-

mation, and have access to information about the curvature of the error function. We will

see that this allows us to relate the learning rate, α in equation (1.5), to the curvature, or

4

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

more precisely the eigenvalues of the Hessian. It is intuitive that the curvature should

effect the optimal learning rate; for example, when the error function is almost flat

and has a very shallow curvature we need to update the parameters a lot to reach a

minimum, so the learning rate should be large.To find ε that minimizes E(θ+ε) we will

take the gradient of equation (1.6) with respect to ε, set the result equal to zero, and then

solve. This prescription may not find a sensible ε if E(θ+ε) does not have a minimum,

for example, if the error function curves downwards in some directions and there is no

minimum. So we will assume the error function curves upwards and thus all eigenvalues

of H are greater than zero.

∇εE(θ+ε)=∇ε

(
E(θ)+∇θE(θ)Tε+ 1

2
εTHε

)
(1.7)

=∇θE(θ)+Hε

set= 0

ε=−H−1∇θE(θ) (1.8)

Writing equation (1.8) in the form of an iterative algorithm for updating the parameters

θ(i+1) = θ(i)−H−1∇E(θ(i)) (1.9)

we arrive at what is called Newton’s method. The Hessian, H, is a symmetric matrix

so from the spectral theorem of linear algebra we know that the eigenvectors of H
form an orthonormal basis set and we can write any vector as a weighted sum of these

eigenvectors. In particular we’ll express ∇E(θ(i)) in terms of the eigenvectors, vi, of H.

Hvi =λivi so H−1vi = 1
λi

vi and

H−1∇E(θ)=∑
i

1
λi

(∇E(θ)Tvi
)
vi (1.10)

Equation (1.10) decomposes the parameter update into components along the direction

of each eigenvector. The portion of the gradient along the direction of eigenvector vi is(∇E(θ)Tvi
)
. To update the parameters along this direction we multiply this gradient by

a learning rate of 1/λi. In summary, from equation (1.10) we see that if the error function

has a minimum and is well described by our second-order Taylor approximation, e.g.

the error is a quadratic function whose Hessian has eigenvalues greater than zero, the

optimal step size along the direction of an eigenvector is 1/eigenvalue. In fact, if we are

minimizing a quadratic function (with a Hessian whose eigenvalues are greater than

zero) then the minimum will be reached after a single parameter update from equation

(1.9).

5

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

If the Hessian has directions of negative curvature then the quadratic approximation

does not have a minimum along these directions. However, the real error surface of deep

neural networks is not quadratic and so we might expect there will be some maximum

step size we can take along these negative curvature directions before the error starts to

increase again. Several authors have suggested that 1/ |λi | may also be the optimal step

size to use in this case as well, under some conditions concerning the extent to which

local information generalizes to unseen parts of the error surface (Nocedal and Wright,

2006; Murray, 2010; Dauphin et al., 2014). However, recent empirical work has shown

that for deep neural networks the optimal step size along directions of negative curvature

is much larger than 1/ |λi | (Alain et al., 2018). Interestingly, even though the loss surface

of deep neural networks is not quadratic the optimal step size along directions of positive

curvature was empirically close to the 1/λi predicted by the quadratic approximation

(Alain et al., 2018).

To better understand the parameter updates in Newton’s method we projected onto

the eigenvectors of the Hessian. We can use this same approach to understand other

variants of gradient descent. For example, consider the more general form of gradient

descent where in addition to the scalar learning rate we now multiply the gradient by a

square matrix:

θ(i+1) = θ(i)−αM∇E(θ(i)) (1.11)

where α is the learning rate and M is some square matrix with a complete set of

orthonormal eigenvectors. Denote the ith eigenvector of M by vi so Mvi =λivi. We now

project the parameter update in equation (1.11) onto the ith eigenvector of M

vT
i θ

(i+1) = vT
i θ

(i)−αvT
i M

(∑
j

v jv
T
j
)∇E(θ(i))

= vT
i θ

(i)−αvT
i
(∑

j
λ jv jv

T
j
)∇E(θ(i))

= vT
i θ

(i)−αλiv
T
i ∇E(θ(i)) (1.12)

Multiplying equation (1.12) by vi and then summing over i yields

θ(i+1) = θ(i)−α∑
i
λi

(
vT

i ∇E(θ(i))
)
vi (1.13)

Equation (1.13) decomposes the parameter update into components along the direction

of each eigenvector. The portion of the gradient along the direction of eigenvector vi is(
vT

i ∇E(θ)
)
. To update the parameters along this direction we multiply this gradient by a

6

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

learning rate of αλi. In summary, we see that the effect of multiplying the gradient by

M in equation (1.11) is to scale the learning rate along the direction of each eigenvector,

vi, by the eigenvalue, λi.

We have seen how information about the curvature can help us select learning rates

when the error function is well approximated by a quadratic surface with positive eigen-

values, and these intuitions can be generalized to deep neural networks with potentially

negative curvature directions by approximating the Hessian with a positive semi-definite

matrix, like the Gauss-Newton or Fisher matrix (Schraudolph, 2002; LeRoux et al., 2007;

Martens, 2010; Martens and Sutskever, 2012). However, it is computationally expensive

to compute and invert the Hessian or its matrix approximations and so in practice neural

networks are most commonly optimized using gradient descent as in equation (1.5).

There is some debate about whether the learning rate should be adaptively adjusted for

each parameter (using a method which might successively approximate the curvature

with a diagonal matrix) or whether better performance is obtained with a single well

chosen initial learning rate, decay schedule, and momentum (Hardt et al., 2016; Wilson

et al., 2017; Keskar and Socher, 2017). In either case, it is worth revisiting the quadratic

function and optimizing this with a single learning rate to see when this is easy or hard

and thus understand how we should alter the error surface to improve optimization

when complete curvature information is not available.

Let’s minimize the quadratic function

f(x)= 1
2

xTAx−bTx+ c x ∈RN (1.14)

where A has positive eigenvalues. This is a simple model but can approximate many

functions via its interpretation as the second-order Taylor series from equation (1.6),

where the Hessian is approximated with the Gauss-Newton matrix or Fisher information

matrix (Amari, 1998; Martens, 2017). We can assume that A is symmetric. If A is

not symmetric we could replace it with the symmetric matrix A = (A+ AT)/2 without

changing f(x) because xTAx= xTAx. To find the minimum of f(x) we set the derivative

equal to zero and obtain

∇f(x)= Ax−b set= 0 (1.15)

x∗ = A−1b (1.16)

where x∗ is the solution that minimizes f(x). Now let’s compare this optimal solution

with the approximate solutions found using the gradient descent updates from equation

7

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

(1.5). For the quadratic function, the parameters at iteration i are updated to obtain the

parameters at iteration i+1 as follows.

x(i+1) = x(i)−α(Ax(i)−b) (1.17)

The evolution of the parameters is clearer when we project the error between the gradient

update and the optimal solution onto the eigenvectors of the Hessian matrix, A. We

denote the mth eigenvector by vm so Avm =λmvm and

vT
m(x(i)− x∗)= vT

m
(
x(i−1)−α(Ax(i−1)−b)− x∗)

= (1−αλm)vT
m(x(i−1)− x∗)

= (1−αλm)i vT
m(x(0)− x∗) (1.18)

The error along each eigenvector evolves independently and decreases by a factor of

(1−αλm) after each parameter update. Summing over the components of the error along

each eigenvector yields

x(i)− x∗ =∑
m

(1−αλm)i vT
m(x(0)− x∗)vm (1.19)

Notice that if we use a separate learning rate along the direction of each eigenvector,

αm = 1/λm, then the parameters, x(i), reach the minimum after a single update, and we

recover the previous result. However, if we use the same learning rate for all parameters

then not all terms in this sum will decrease at the same rate (assuming all eigenvalues

are not the same) and we will only reach the optimal solution after repeated parameter

updates. For most values of the learning rate the error along eigenvector directions

of high curvature (large eigenvalues) will decrease first, followed by a period of slow

convergence as the error along the small eigenvalue directions is minimized. The error

between the minimum value of the quadratic function and the value after parameter

update x(i) is

f (x(i))− f (x∗)= 1
2

∑
m

(1−αλm)2i (vT
m(x(0)− x∗))2λm (1.20)

In order for the error to decrease for any value of x(0) the learning rate must be within

some bounds, namely, |1−αλm| < 1 or

0<α< 2
λm

for all m (1.21)

If |1−αλm| is close to zero then the error along this direction will decrease quickly, and if

this term is near one the error will decrease slowly. The magnitude of |1−αλm| controls

8

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

the speed of convergence. In order to reach the optimal solution all components of the

error must decrease, so the speed of convergence is limited by the term with the maximum

value of |1−αλm| (assuming the components of the error along each eigenvector are

initially nonzero). Therefore, in order to ensure the worst-case convergence is as fast as

possible, we’ll choose α such that no values of |1−αλm| are large, i.e. α minimizes

max
1≤m≤N

|1−αλm| =max
{|1−αλmax|, |1−αλmin|

}
=max

1−αλmin, 0<α< 2
λmin+λmax

αλmax −1, 2
λmin+λmax

≤α< 2
λmax

(1.22)

where λmax denotes the largest eigenvalue and λmin denotes the smallest. This expression

defines two line segments: 1−αλmin has a maximum value of 1 when α = 0 and then

slopes downwards as α increases. αλmax −1 has a maximum value of 1 when α= 2/λmax

and decreases as α decreases. The optimal constant learning rate in this setting is the

value of α that minimizes expression (1.22) and is

α∗ = 2
λmin +λmax

(1.23)

(Elman and Golub, 1994; Yuan, 2008; Goh, 2017). With this learning rate the upper

bound on the speed of convergence is

max
1≤m≤N

|1−α∗λm| = λmax/λmin −1
λmax/λmin +1

(1.24)

From equation (1.24) we see that it is not small or large curvature that makes learning

with gradient descent difficult, rather, it is unequal curvature along different directions.

When λmax/λmin À 1 equation (1.24) approaches one and the error along some directions

will decrease very slowly.

The error surface of a deep neural network is more complicated than this quadratic

example but these results still inform research intuitions and practical recommendations.

For example, to encourage uniform curvature along different directions of the error

surface the inputs are adjusted, e.g. each component of the input vector is transformed

so it has zero mean and unit variance over the whole training set (Hinton et al., 2012).

More generally, many of the recent advances in training neural networks are thought to

improve optimization by smoothing the error surface or biasing parameter optimization

to regions with more uniform curvature (Im et al., 2016; Hardt and Ma, 2017; Li et al.,

2017; Karras et al., 2018; Santurkar et al., 2018; Rahaman et al., 2018; Xing et al., 2018).

9

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

1.2 Backpropagation through time and real-time
recurrent learning

To find the parameters that minimize our error function using gradient descent from

equation (1.5), we must calculate the derivative of the error function with respect to the

parameters of our model. We can rely on the definition of the derivative and use the

method of finite differences to obtain the partial derivative of E with respect to the ith
parameter θi:

∂E
∂θi

= lim
ε→0

E(θi +ε)−E(θi)
ε

(1.25)

where ε is some infinitesimally small number. However, this naive method is inefficient

and slow as we must perturb each parameter and then calculate E(θi +ε). Passing the

training data through the model and calculating the error, E, is called the forward pass.

If we have N parameters and use equation (1.25) to estimate the gradient, ∇E(θ), we

will need to make N forward passes to calculate the perturbations of each parameter

and a final forward pass to calculate the baseline error E(θ) at our current parameter

values. We can reduce the computational load by perturbing the activities of the units in

the neural network instead of the weights. Once we know how we want a unit to change

we can compute how to change the weights. A typical neural network has fewer units

than weights and so the number of forward passes required to compute ∂E/∂uniti is less

than the number required for ∂E/∂θi. However, we can increase the efficiency of the

gradient calculation even more. In a standard neural network each parameter, or unit

activity, does not have an independent effect on the error function and so we can use

a method called backpropagation that requires only a single forward pass and another

pass of comparable speed, called the backward pass.

To demonstrate how to efficiently calculate derivatives of the error function with

respect to the parameters, and highlight some of the associated problems, we will consider

a simple recurrent neural network defined by the following equations.

h(t)=Wrecσ
(
h(t−1)

)+W inx(t) (1.26)

y(t)=Wouth(t) (1.27)

where h(t) is a vector denoting the activity of the units in the network at time t. The

hidden units in the network at time t receive input from other units at time t−1 through

the recurrent weight matrix Wrec and also receive external input, x(t), that enters the

network through the matrix W in. σ is a nonlinearity, e.g. tanh, applied to each element of

10

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

the vector h(t). The output of the network, y(t), is a linear sum of the unit activities via

the matrix Wout. To optimize the parameters, Wrec, W in, and Wout we need to quantify the

error between the network outputs, y(t), and the target outputs, ytarget(t). For simplicity

we will assume we only care about the network output at the last timestep T. So if we

use the squared difference to quantify the error we have

E = 1
2

Nout∑
j=1

(
yj(T)− ytarget

j (T)
)2 (1.28)

where the sum is over all Nout outputs.

To calculate the derivatives it is helpful to see how variations in different variables

propagate through the network and how they contribute to the error function by unrolling

the network activity over time as shown in Figure 1.3. Figure 1.3A shows the variables in

the recurrent neural network defined by equations (1.26) and (1.27). Figure 1.3B shows

the same network at each timestep. The arrows indicate dependencies between variables,

and are drawn when one variable has a direct effect on another variable. For example,

the hidden unit activity at the first timestep, h(1), only effects the hidden unit activity

at later timesteps by altering the values of h(2).

A	 B	

.	.	.	

y(1)	 y(2)	 y(T)	y	

x	

h	

x(1)	 x(2)	 x(T)	

h(1)	 h(2)	 h(T)	h(0)	

Figure 1.3: (A) Recurrent neural network (B) Recurrent neural network unrolled in
time: time is represented spatially as a new layer in a deep feedforward network with a
new layer at each timestep. Arrows are drawn when one variable has a direct effect on
another variable. For example, the hidden unit activity at the first timestep, h(1), only
effects the hidden unit activity at later timesteps through h(2).

To update the parameters, W in, Wrec, and Wout with gradient descent we must

calculate the gradient of the error function with respect to each of these parameters. The

11

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

calculation is most straightforward for Wout so we will start with this. Variations in Wout

only effect E through y(T) so

∂E
∂Wout

i j
=

Nout∑
k=1

∂E
∂yk(T)

∂yk(T)
∂Wout

i j

=
Nout∑
k=1

(
yk(T)− ytarget

k (T)
)
δkih j(T)

= (
yi(T)− ytarget

i (T)
)
h j(T) (1.29)

where we used equations (1.27) and (1.28) to compute the partial derivatives, and δi j is

the Kronecker delta which takes a value of 1 when i = j and is 0 otherwise.

To motivate the gradient calculation for W in and Wrec consider that the only way

variations in these parameters effect the error is through h(T). So

∂E
∂W in

i j

=
Nrec∑
k=1

∂E
∂hk(T)

dhk(T)
dW in

i j

(1.30)

∂E
∂Wrec

i j
=

Nrec∑
k=1

∂E
∂hk(T)

dhk(T)
dWrec

i j
(1.31)

Computing ∂E/∂hk(T) is straightforward as we will see. However, we must also compute

dhk(T)/dWi j, the change in the hidden unit activity at time T as a result of changing

Wi j taking into account the effect that changing this weight has on the entire network
trajectory from t = 1 through the final timestep. Calculating the derivative of the hidden

unit activity with respect to the parameters is an intermediate calculation that can be

used to find gradients for any neural network having the form

h(t)= f (h(t−1), x(t), θ) (1.32)

where θ is a parameter and f is an arbitrary function of the unit activity at the previous

timestep, h(t−1), and the input x(t). To find dh(t)/dθ we can differentiate this expression

with respect to θ and obtain

dh(t)
dθ

= ∂h(t)
∂h(t−1)

dh(t−1)
dθ

+ ∂h(t)
∂x(t)

dx(t)
dθ

+ ∂h(t)
∂θ

= ∂h(t)
∂h(t−1)

dh(t−1)
dθ

+ ∂h(t)
∂θ

(1.33)

where we assume the input x(t) does not depend on θ so dx(t)/dθ is zero. This is a

recursion relation for dh(t)/dθ in terms of dh(t−1)/dθ. If we assume the initial activity

12

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

of the network does not depend on θ then the recursion is initialized with

dh(0)
dθ

= 0 (1.34)

This approach for computing gradients in terms of a recursion for dh(t)/dθ is called

real-time recurrent learning (Robinson and Fallside, 1987; Williams and Zipser, 1989).

Using this approach and the definition of h(t) from equation (1.26) to solve our original

problem yields

dhk(t)
dW in

i j

= d
dW in

i j

(∑
m

Wrec
kmσ(hm(t−1))+∑

m
W in

km xm(t)
)

=∑
m

Wrec
kmσ′(hm(t−1))

dhm(t−1)
dW in

i j

+ δkix j(t) (1.35)

dhk(t)
dWrec

i j
= d

dWrec
i j

(∑
m

Wrec
kmσ(hm(t−1))

)
= δikσ(h j(t−1)) + ∑

m
Wrec

kmσ′(hm(t−1))
dhm(t−1)

dWrec
i j

(1.36)

The only other term we need in order to calculate the gradients using equations (1.30)

and (1.31) is ∂E/∂h(T). Variations in h only contribute to the error through y(T) so

∂E
∂hk(T)

=∑
m

∂E
∂ym(T)

ym(T)
∂hk(T)

(1.37)

=∑
m

(
ym(T)− ytarget

m (T)
)
Wout

mk (1.38)

Real-time recurrent learning is not commonly used in practice as it is slower than

backpropagation through time, which we will cover next. In the recursion relations for

dh/dW from equations (1.35) and (1.36) notice that we are calculating the derivative

of a vector with respect to a matrix. In the recursion for dh/dWrec we must store and

compute N3 numbers, where N is the number of hidden units in our network. If we could

write a set of recursion relations for a quantity that depended on derivatives of a scalar

with respect to a vector we would only have N numbers to store and fewer operations to

compute. This is the advantage of backpropagation through time, which uses a recursion

relation for ∂E/∂h (Werbos, 1974, 1982; Rumelhart et al., 1986; Robinson and Fallside,

1987).

It is instructive to compute the gradients using backpropgation through time as

this will allow us to see the much-studied vanishing and exploding gradient problem

13

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

associated with this algorithm (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al.,

2012). Similar to the calculation we performed for real-time recurrent learning, we’ll

first express the derivatives of the error function with respect to W in and Wrec in terms

of the quantity we will use in the recursion, i.e. ∂E/∂h(t). Then we will write down a

recursion relation, along with the initial condition, to solve for ∂E/∂h(t). Variations in

W in
i j and Wrec

i j only effect E through hi(t) so

∂E
∂W in

i j

=∑
t

∂E
∂hi(t)

∂hi(t)
∂W in

i j

=∑
t

∂E
∂hi(t)

x j(t) (1.39)

∂E
∂Wrec

i j
=∑

t

∂E
∂hi(t)

∂hi(t)
∂Wrec

i j

=∑
t

∂E
∂hi(t)

σ(h j(t−1)) (1.40)

To obtain the recursion relation for ∂E/∂h(t) notice that when t = T variations in h(T)

give rise to variations in E only through y(T), so

∂E
∂hi(T)

=∑
k

∂E
∂yk(T)

∂yk(T)
∂hi(T)

=∑
k

(
yk(T)− ytarget

k (T)
)
Wout

ki (1.41)

This expression contains terms we know and is how we start the recursion. To compute

∂E/∂h(t) for other values of t notice that when t < T variations in h(t) give rise to

variations in E only through h(t+1) so

∂E
∂hi(t)

=∑
k

∂E
∂hk(t+1)

∂hk(t+1)
∂hi(t)

=∑
k

∂E
∂hk(t+1)

Wrec
ki σ

′(hi(t)) (1.42)

Writing this as a single equation for the entire vector ∂E/∂h(t) yields

∂E
∂h(t−1)

= diag(σ′(h(t))) (Wrec)T
∂E
∂h(t)

(1.43)

Equation (1.43) gives the recursion relation to go from time t to time t−1. This recursion

is backwards in time, starting from t = T and ending at t = 1 motivating the name of

the algorithm: backpropagation through time. We will consider two limiting cases of

14

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

equation (1.43) to better understand the behavior when t becomes large. Imagine the

nonlinearity σ is actually the identity transformation, i.e. there is no nonlinearity in

equation (1.26) and σ(h(t))= h(t). So σ′ = 1 and equation (1.43) becomes

∂E
∂h(t−1)

= (Wrec)T
∂E
∂h(t)

(1.44)

Let Wrec = UΣVT be the singular value decomposition of Wrec and assume all of the

singular values, s, are the same for simplicity. Then∥∥∥∥ ∂E
∂h(t−1)

∥∥∥∥= s
∥∥∥∥ ∂E
∂h(t)

∥∥∥∥ (1.45)

where we have used the fact that U and V are orthogonal matrices by the definition of

the singular value decomposition and so UUT = 1 and VTV = 1. For each timestep we go

further into the past the norm is multiplied by another factor of s. For example, if there

are 100 timesteps in our recurrent neural network then∥∥∥∥ ∂E
∂h(1)

∥∥∥∥= s99
∥∥∥∥ ∂E
∂h(T)

∥∥∥∥ (1.46)

We see that in the linear network, the norm of ∂E/∂h(t) is stable if the singular values

of Wrec are 1. This has inspired many initialization and training schemes for nonlinear

networks with the goal of keeping the singular values of Wrec near 1 (Socher et al.,

2013; Saxe et al., 2014; Le et al., 2015; Arjovsky et al., 2016). The vanishing gradient

problem occurs when s < 1, causing the norm to decrease exponentially towards zero.

The gradients in equations (1.39) and (1.40) are a sum of terms containing ∂E/∂h(t) so, if

s < 1, the only terms that will meaningfully contribute to the gradient are terms near

the final timestep T. Long-term dependencies get a weight that is exponentially smaller

in t compared to short-term dependencies, making it impossible to learn relationships

between temporally distant events. The exploding gradient problem occurs when s > 1,

causing the norm to increase exponentially as we move further back in time away from

the final timestep T. Pascanu et al. (2012) hypothesized that this exploding gradient

corresponds to encounters with a steep mountain-like error surface. They suggested

thinking of the error landscape as a series of shallow valleys sloping towards steady

error reduction, adjacent to steep mountains of high error. If gradient descent takes a

small step onto the mountain, i.e. a region of high curvature, the gradient will explode,

kicking the parameters away from the mountain and also far away from the valley,

likely increasing the error. The error surface is generally not known a priori and so

parameter updates will unavoidably step onto regions of high curvature and the gradient

15

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

will explode. To prevent the negative consequences of this exploding gradient, individual

elements of the gradient vector are often truncated when they exceed some maximum

absolute value, or alternatively, the norm of the gradient is rescaled if it exceeds a

maximum, before using the gradient vector to update the parameters via gradient

descent (Mikolov, 2012; Pascanu et al., 2012).

We have considered the vanishing and exploding gradient problems in the context of

a linear recurrent network as it is easy to see how the singular values of Wrec influence

the gradient. However, the nonlinearity also effects the gradient. For simplicity, consider

equation (1.43) when the network only has a single unit. The recurrence relation becomes

∂E
∂h(t−1)

=σ′(h(t)) Wrec ∂E
∂h(t)

(1.47)

If there is no nonlinearity then σ′(h(t)) = 1 and Wrec = 1 leads to a stable value for

∂E/∂h(t). However, in the presence of the nonlinearity, even if Wrec = 1, ∂E/∂h(t) can

vanish or explode depending on the slope of the nonlinearity. For saturating nonlineari-

ties like the logistic function or hyperbolic tangent the slope can be very small in some

regions causing ∂E/∂h(t) to vanish. To avoid this problem it is important to initialize the

parameters so these nonlinearities are not in their saturating regimes where the deriva-

tive is near zero. To mitigate the vanishing gradient problem caused by nonlinearities

with slopes less than 1, the rectified linear nonlinearity σ(h) = max(0,h) is often used

as this has a derivative of 1 for positive inputs (Jordan, 1986; Hahnloser et al., 2000;

Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011).

We have discussed the vanishing and exploding gradient problems for the specific

neural network model defined by equations (1.26) and (1.27) but another approach for

reducing these problems is to alter the architecture of the network by changing these

equations. Many architectures have been explored. For example, we can add delays in the

network in order to effectively skip from early times to later times (Lin et al., 1996; ElHihi

and Bengio, 1996). In the unrolled graph of Figure 1.3 this would correspond to arrows

connecting h(1), for example, to h(T) providing a shorter path for propagating gradient

information. However, a standard RNN inevitably morphs the unit activity from one

timestep to the next, h(t)= f (h(t−1)), leading to a degradation of information transfer

across time. The most common architectural solution is to simply copy the activity at one

timepoint directly to another timepoint, h(t)= h(t−1), preserving the flow of information.

This is one of the essential ideas motivating long short-term memory (LSTM) units and

other more recent architectural advances (Hochreiter and Schmidhuber, 1997; Cho et al.,

16

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

2014; He et al., 2015; Srivastava et al., 2015; Zilly et al., 2016). These have proven to be

good architectures for performing computations but if we are modeling the brain it seems

likely that using components with some of the same weaknesses will force the solutions

found by RNNs to more closely match the brain. For example, in the projects described

in the rest of this thesis we use RNNs having units with individual time constants far

too short to solve the working memory tasks we train the RNNs to solve. This forces the

RNNs to use the dynamics of multiple units together to store information and perform

the tasks. This is in contrast to solutions we would obtain with a LSTM network, or

one of its variants, where information can be stored by a single unit and so no network

dynamics would be required.

The specific network model we use in the remainder of this thesis is defined by the

following equations. The dynamics of each unit in the network hi(t) is governed by the

standard continuous-time RNN equation:

τ
dvi(t)

dt
=−vi(t)+

Nrec∑
j=1

Wrec
i j h j(t)+

Nin∑
k=1

W in
ik Ik(t)+bi +ξi(t) (1.48)

for i = 1, . . . , Nrec. The activity of each unit, hi(t), is related to the activation of that

unit, vi(t), through a nonlinearity which we generally take to be hi(t)= tanh(vi(t)). Each

unit receives input from other units through the recurrent weight matrix Wrec and

also receives external input, I(t), that enters the network through the weight matrix

W in. Each unit has two sources of bias, bi which is learned and ξi(t) which represents

noise intrinsic to the network and is taken to be Gaussian with zero mean and constant

variance. To perform tasks with the RNN we linearly combine the ‘firing rates’ of units

in the network and use this as the output. The linear readout neurons, yj(t), are given

by the following equation:

yj(t)=
Nrec∑
i=1

Wout
ji hi(t) (1.49)

This model can be motivated from the dynamics of spiking neurons (Dayan and Abbott,

2001; Shriki et al., 2003; Harish and Hansel, 2015). However, in this case the unit

activity must be interpreted as the positive firing rate of a neuron and the recurrent

weight matrix Wrec satisfies Dale’s law, i.e. each neuron has either an excitatory or

inhibitory effect on all of its postsynaptic targets and so all the elements within a column

of Wrec have the same sign. This interpretation may be overly restrictive as theoretical

and empirical work suggests that unit activities in equation (1.48) can be interpreted

as linear combinations of neural firing rates (Mante et al., 2013; Yamins et al., 2014;

17

CHAPTER 1. INTRODUCTION AND BACKGROUND
CHRISTOPHER CUEVA

DePasquale et al., 2016). This interpretation implies there are no positivity constraints

on the unit activities and the recurrent weight matrix need not satisfy Dale’s law.

The RNN defined by equation (1.48) shares some of the same limitations as the brain,

namely, individual units with limited memory and computational capabilities, forcing

the RNN to use interactions between multiple units and the collective dynamics of the

network to solve problems. This could increase the similarity between the computational

mechanisms used by the RNN and those of the brain. However, we might wonder if

the RNN defined by equation (1.48) is too limited in its computational capabilities and

thus not able to solve certain classes of problems, a priori restricting its applicability for

modeling aspects of cognition. Fortunately, it is Turing complete for infinite precision

states and infinite computation time (Siegelmann and Sontag, 1992, 1994; Siegelmann,

1999; Chen et al., 2017), although see Weiss et al. (2018) for some caveats in more

realistic scenarios with finite precision and computing time.

18

BIBLIOGRAPHY

Alain, G., Le Roux, N., and Manzagol, P. A. (2018).

Negative eigenvalues of the hessian in deep neural networks.

International Conference on Learning Representations (ICLR).

Amari, S. (1998).

Natural gradient works efficiently in learning.

Neural Computation.

Arjovsky, M., Shah, A., and Bengio, Y. (2016).

Unitary evolution recurrent neural networks.

arXiv:1511.06464.

Bengio, Y., Simard, P., and Frasconi, P. (1994).

Learning long-term dependencies with gradient descent is difficult.

IEEE Transactions on Neural Networks.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018).

Optimization methods for large-scale machine learning.

arXiv:1606.04838.

Cauchy, A. (1847).

Méthode générale pour la résolution des systèmes d’équations simultanées.

Comp. Rend. Sci. Paris.

Chen, Y., Gilroy, S., Maletti, A., May, J., and Knight, K. (2017).

Recurrent neural networks as weighted language recognizers.

arXiv:1711.05408.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014).

Learning phrase representations using rnn encoder-decoder for statistical machine

translation.

arXiv:1406.1078.

19

BIBLIOGRAPHY

Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014).

Identifying and attacking the saddle point problem in high-dimensional non-convex

optimization.

Advances in Neural Information Processing Systems (NIPS).

Dayan, P. and Abbott, L. F. (2001).

Theoretical neuroscience: Computational and mathematical modeling of neural sys-

tems.

MIT Press.

DePasquale, B., Churchland, M. M., and Abbott, L. F. (2016).

Using firing-rate dynamics to train recurrent networks of spiking model neurons.

arXiv:1601.07620.

Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of Machine Learning Research.

ElHihi, S. and Bengio, Y. (1996).

Hierarchical recurrent neural networks for long-term dependencies.

Advances in Neural Information Processing Systems (NIPS).

Elman, H. and Golub, G. (1994).

Inexact and preconditioned uzawa algorithms for saddle point problems.

SIAM J. Numer. Anal.

Glorot, X., Bordes, A., and Bengio, Y. (2011).

Deep sparse rectifier neural networks.

AISTATS.

Goh, G. (2017).

Why momentum really works.

Distill.

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S.

(2000).

Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.

Nature.

20

BIBLIOGRAPHY

Hardt, M. and Ma, T. (2017).

Identity matters in deep learning.

International Conference on Learning Representations.

Hardt, M., Recht, B., and Singer, Y. (2016).

Train faster, generalize better: Stability of stochastic gradient descent.

International Conference on Machine Learning (ICML).

Harish, O. and Hansel, D. (2015).

Asynchronous rate chaos in spiking neuronal circuits.

PLoS Computational Biology.

He, K., Zhang, X., Ren, S., and Sun, J. (2015).

Deep residual learning for image recognition.

arXiv:1512.03385.

Hinton, G., Srivastava, N., and Swersky, K. (2012).

Lecture 6a overview of mini?batch gradient descent.

Coursera Lecture slides https://class.coursera.org/neuralnets-2012-001/lecture.

Hochreiter, S. (1991).

Untersuchungen zu dynamischen neuronalen netzen.

Diploma thesis, Technical University Munich, Institute of Computer Science.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural Computation.

Im, D., Tao, M., and Branson, K. (2016).

An empirical analysis of deep network loss surface.

arXiv:1612.04010.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., and LeCun, Y. (2009).

What is the best multi-stage architecture for object recognition?

International Conference on Computer Vision.

Jordan, M. I. (1986).

An introduction to linear algebra in parallel distributed processing.

Parallel Distributed Processing, MIT Press.

21

BIBLIOGRAPHY

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018).

Progressive growing of gans for improved quality, stability, and variation.

International Conference on Learning Representations.

Keskar, N. S. and Socher, R. (2017).

Improving generalization performance by switching from adam to sgd.

arXiv:1712.07628.

Kingma, D. P. and Ba, J. L. (2015).

Adam: a method for stochastic optimization.

International Conference on Learning Representations.

Le, Q. V., Navdeep, J., and Hinton, G. E. (2015).

A simple way to initialize recurrent networks of rectified linear units.

arXiv:1504.00941.

LeRoux, N., Manzagol, P., and Bengio, Y. (2007).

Topmoumoute online natural gradient algorithm.

Advances in Neural Information Processing Systems.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2017).

Visualizing the loss landscape of neural nets.

arXiv:1712.09913.

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996).

Learning long-term dependencies is not as difficult with narx recurrent neural net-

works.

Advances in Neural Information Processing Systems (NIPS).

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013).

Context-dependent computation by recurrent dynamics in prefrontal cortex.

Nature.

Martens, J. (2010).

Deep learning via hessian-free optimization.

International Conference on Machine Learning (ICML).

Martens, J. (2017).

New insights and perspectives on the natural gradient method.

arXiv:1412.1193.

22

BIBLIOGRAPHY

Martens, J. and Sutskever, I. (2012).

Learning recurrent neural networks with hessian-free optimization.

International Conference on Machine Learning (ICML).

Mikolov, T. (2012).

Statistical language models based on neural networks.

Ph.D. thesis, Brno University of Technology.

Murray, W. (2010).

Newton-type methods.

Technical report, Department of Management Science and Engineering, Stanford Uni-
versity.

Nair, V. and Hinton, G. E. (2010).

Rectified linear units improve restricted boltzmann machines.

International Conference on Machine Learning.

Nesterov, Y. (1983).

A method of solving a convex programming problem with convergence rate o(1/k2).

Soviet Mathematics Doklady.

Nocedal, J. and Wright, S. (2006).

Numerical optimization.

Springer.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012).

On the difficulty of training recurrent neural networks.

arXiv:1211.5063.

Qian, N. (1999).

On the momentum term in gradient descent learning algorithms.

Neural Network.

Rahaman, N., Arpit, D., Baratin, A., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and

Courville, A. (2018).

On the spectral bias of deep neural networks.

arXiv:1806.08734.

Robbins, H. and Monro, S. (1951).

A stochastic approximation method.

23

BIBLIOGRAPHY

The Annals of Mathematical Statistics.

Robinson, A. J. and Fallside, F. (1987).

The utility driven dynamic error propagation network.

Technical report, Cambridge University Engineering Department.

Ruder, S. (2017).

An overview of gradient descent optimization algorithms.

arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).

Learning representations by back-propagating errors.

Nature.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018).

How does batch normalization help optimization? (no, it is not about internal covariate

shift).

arXiv:1805.11604.

Saxe, A., McLelland, J. L., and Ganguli, S. (2014).

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.

International Conference in Learning Representations.

Schmidhuber, J. (2015).

Deep learning in neural networks: An overview.

Neural Network.

Schraudolph, N. N. (2002).

Fast curvature matrix-vector products for second-order gradient descent.

Neural computation.

Shriki, O., Hansel, D., and Sompolinsky, H. (2003).

Rate models for conductance-based cortical neuronal networks.

Neural Computation.

Siegelmann, H. T. (1999).

Neural networks and analog computation: Beyond the turing limit.

Birkhauser, Boston, MA.

24

BIBLIOGRAPHY

Siegelmann, H. T. and Sontag, E. D. (1992).

On the computational power of neural nets.

Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory
(COLT).

Siegelmann, H. T. and Sontag, E. D. (1994).

Analog computation via neural networks.

Theoretical Computer Science.

Socher, R., Bauer, J., Manning, C. D., and Ng, A. Y. (2013).

Parsing with compositional vector grammars.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015).

Highway networks.

arXiv:1505.00387.

Weiss, G., Goldberg, Y., and Yahav, E. (2018).

On the practical computational power of finite precision rnns for language recognition.

Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics.

Werbos, P. (1974).

Beyond regression: New tools for prediction and analysis in the behavioral sciences.

Ph.D. thesis, Harvard University.

Werbos, P. (1982).

Applications of advances in nonlinear sensitivity analysis.

Proceedings of the 10th IFIP Conference.

Williams, R. J. and Zipser, D. (1989).

A learning algorithm for continually running fully recurrent neural networks.

Neural computation.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2017).

The marginal value of adaptive gradient methods in machine learning.

Advances in Neural Information Processing Systems.

25

BIBLIOGRAPHY

Xing, C., Arpit, D., Tsirigotis, C., and Bengio, Y. (2018).

A walk with sgd.

arXiv:1802.08770.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and DiCarlo, J. J.

(2014).

Performance-optimized hierarchical models predict neural responses in higher visual

cortex.

PNAS.

Yuan, Y. (2008).

Step-sizes for the gradient method.

AMS/IP Studies in Advanced Mathematics.

Zeiler, M. D. (2012).

Adadelta: An adaptive learning rate method.

arXiv:1212.5701.

Zilly, J. G., Srivastava, R. K., Koutnik, J., and Schmidhuber, J. (2016).

Recurrent highway networks.

arXiv:1607.03474.

26

	Introduction and background Christopher Cueva
	Learning rate
	Backpropagation through time and real-time recurrent learning

	Bibliography

